Intuit Inc.
Sparsity handling for machine learning model forecasting

Last updated:

Abstract:

Systems and methods for generating regressors based on data sparsity using a machine learning (ML) model are described. A system is configured to provide a plurality of time series datasets to a recurrent neural network (RNN) of a machine learning (ML) model. The RNN generates one or more outputs associated with one or more time series datasets, and the system provides a first portion and a second portion of the one or more outputs to a regressor layer and a classification layer of the ML model, respectively. The regressor layer generates one or more regressors for the one or more time series datasets, and the classification layer generates one or more classifications associated with the one or more regressors (with each indicating whether an associated regressor is valid). Whether a classification indicates a regressor is valid may be based on time series data sparsity.

Status:
Grant
Type:

Utility

Filling date:

29 Mar 2022

Issue date:

30 Aug 2022