Lyft, Inc.
DYNAMIC OBJECT DETECTION MODEL BASED ON STATIC MAP COLLECTION DATA
Last updated:
Abstract:
Systems, methods, and non-transitory computer-readable media can obtain information describing a static map of a geographic location, wherein the static map is determined based at least in part on a plurality of three-dimensional representations of the geographic location captured by one or more sensors of one or more vehicles. At least one training example that includes visual features and a corresponding label can be generated based on an unsupervised process for generating training examples, wherein the visual features are extracted based on the static map and at least one three-dimensional representation of the geographic location. At least one machine learning model can be trained to distinguish between static objects and non-static objects in visual data based on the at least one training example, wherein the at least one machine learning model is trained based on an unsupervised learning process.
Utility
28 Jun 2019
31 Dec 2020