Lyft, Inc.
DYNAMICALLY GENERATING AND UPDATING MULTIPLIERS FOR A TRANSPORTATION MATCHING SYSTEM USING MACHINE LEARNING
Last updated:
Abstract:
This disclosure covers machine-learning methods, non-transitory computer readable media, and systems that generate a multiplier that efficiently and effectively provides on-demand transportation services for a geographic area. The methods, non-transitory computer readable media, and systems dynamically adjust the multiplier with machine learners to maintain a target estimated time of arrival for a provider device to fulfill a request received from a requestor device. In some embodiments, the methods, non-transitory computer readable media, and systems generate a multiplier report comprising a representation of a geographic area and an indication of the multiplier to facilitate inflow and outflow of provider devices within and without the geographic area.
Utility
6 Jul 2020
31 Dec 2020