Mastercard Incorporated
METHODS AND SYSTEMS FOR SERVER FAILURE PREDICTION USING SERVER LOGS
Last updated:
Abstract:
Embodiments provide methods and systems of predicting server failures. A method may include accessing distinct log clusters representing instructions executed in server, applying first density machine learning model over input vector of distinct log clusters, with length equal to number of distinct log clusters, for obtaining first prediction output, applying first sequential machine learning model over time length sequence of distinct log clusters for obtaining second prediction output, applying second density machine learning model over input vector for obtaining third prediction output, applying second sequential machine learning model over time length sequence of distinct log clusters for obtaining fourth prediction output, aggregating first, second, third and fourth prediction outputs by ensemble model, and predicting likelihood of next log clusters to have anomalous behavior based on the aggregating. First density and first sequential models are trained by normal logs. Second density and second sequential models are trained by abnormal logs.
Utility
12 May 2021
18 Nov 2021