Mastercard Incorporated
CARD INACTIVITY MODELING

Last updated:

Abstract:

Systems and computer-implemented methods are described for modeling card inactivity. For example, hierarchical modeling may be used in which a first level classifier may be trained and validated to predict whether a card will be inactive. For cards predicted to become inactive by the first level classifier, a second level classifier may be trained and validated to predict when the card will become inactive. The first level classifier may include a binary classifier that generates two probabilities that respectively predict that the card will and will not become inactive. The second level classifier may include a multi-class classifier that generates a first probability that the card will become inactive at a first time period (such as one or more months in the future) and a second probability that the card will become inactive at a second time period. The multi-class classifier may generate other probabilities corresponding to other time periods.

Status:
Application
Type:

Utility

Filling date:

10 Aug 2021

Issue date:

17 Feb 2022