Meta Platforms, Inc.
Generating refined object proposals using deep-learning models

Last updated:

Abstract:

In one embodiment a plurality of patches of an image are processed, using a first set of layers of a convolutional neural network, to output a plurality of object proposals associated with the plurality of patches of the image. Each patch includes one or more pixels of the image. Each object proposal includes a prediction as to a location of an object in the respective patch. Using a second set of layers of the convolutional neural network, the plurality of object proposals outputted by the first set of layers are processed to generate a plurality of refined object proposals. Each refined object proposal includes pixel-level information for the respective patch of the image. The first layer in the second set of layers of the convolutional neural network takes as input the plurality of object proposals outputted by the first set of layers. Each layer after the first layer in the second set of layers takes as input the output of a preceding layer in the second set of layers combined with the output of a respective layer of the first set of layers.

Status:
Grant
Type:

Utility

Filling date:

22 Dec 2017

Issue date:

3 Dec 2019