Morgan Stanley
FRAUD DETECTION VIA AUTOMATED HANDWRITING CLUSTERING
Last updated:
Abstract:
A computer-implemented method for automatically analyzing handwritten text to determine a mismatch between a purported writer and an actual writer is disclosed. The method comprises receiving two samples of digitized handwriting each allegedly created by one individual and received and entered into a digital system by another. The method further comprises performing a series of feature extractions to convert the samples into two vectors of extracted features; automatically clustering a set of vectors such that the first vector and the second vector are assigned to the same cluster among multiple clusters, based on vector similarity; and automatically determining that a same individual being associated with both the first and second samples indicates a heightened probability that the individual fraudulently created both samples. Finally, the method comprises automatically transmitting a message to flag additional samples of digitized handwriting entered into a digital system as possibly fraudulent.
Utility
15 Nov 2020
19 May 2022