Netflix, Inc.
TECHNIQUES FOR TRAINING A PERCEPTUAL QUALITY MODEL TO ACCOUNT FOR BRIGHTNESS AND COLOR DISTORTIONS IN RECONSTRUCTED VIDEOS
Last updated:
Abstract:
In various embodiments, a training application generates a perceptual video model. The training application computes a first feature value for a first feature included in a feature vector based on a first color component associated with a first reconstructed training video. The training application also computes a second feature value for a second feature included in the feature vector based on a first brightness component associated with the first reconstructed training video. Subsequently, the training application performs one or more machine learning operations based on the first feature value, the second feature value, and a first subjective quality score for the first reconstructed training video to generate a trained perceptual quality model. The trained perceptual quality model maps a feature value vector for the feature vector to a perceptual quality score.
Utility
17 Aug 2020
17 Feb 2022