NVIDIA Corporation
Unsupervised classification of gameplay video using machine learning models

Last updated:

Abstract:

In various examples, potentially highlight-worthy video clips are identified from a gameplay session that a gamer might then selectively share or store for later viewing. The video clips may be identified in an unsupervised manner based on analyzing game data for durations of predicted interest. A classification model may be trained in an unsupervised manner to classify those video clips without requiring manual labeling of game-specific image or audio data. The gamer can select the video clips as highlights (e.g., to share on social media, store in a highlight reel, etc.). The classification model may be updated and improved based on new video clips, such as by creating new video-clip classes.

Status:
Grant
Type:

Utility

Filling date:

2 Jul 2019

Issue date:

1 Jun 2021