NVIDIA Corporation
Three-dimensional (3D) pose estimation from a monocular camera

Last updated:

Abstract:

Estimating a three-dimensional (3D) pose of an object, such as a hand or body (human, animal, robot, etc.), from a 2D image is necessary for human-computer interaction. A hand pose can be represented by a set of points in 3D space, called keypoints. Two coordinates (x,y) represent spatial displacement and a third coordinate represents a depth of every point with respect to the camera. A monocular camera is used to capture an image of the 3D pose, but does not capture depth information. A neural network architecture is configured to generate a depth value for each keypoint in the captured image, even when portions of the pose are occluded, or the orientation of the object is ambiguous. Generation of the depth values enables estimation of the 3D pose of the object.

Status:
Grant
Type:

Utility

Filling date:

1 Mar 2019

Issue date:

23 Feb 2021