NVIDIA Corporation
COMBINED PREDICTION AND PATH PLANNING FOR AUTONOMOUS OBJECTS USING NEURAL NETWORKS

Last updated:

Abstract:

Sensors measure information about actors or other objects near an object, such as a vehicle or robot, to be maneuvered. Sensor data is used to determine a sequence of possible actions for the maneuverable object to achieve a determined goal. For each possible action to be considered, one or more probable reactions of the nearby actors or objects are determined. This can take the form of a decision tree in some embodiments, with alternative levels of nodes corresponding to possible actions of the present object and probable reactive actions of one or more other vehicles or actors. Machine learning can be used to determine the probabilities, as well as to project out the options along the paths of the decision tree including the sequences. A value function is used to generate a value for each considered sequence, or path, and a path having a highest value is selected for use in determining how to navigate the object.

Status:
Application
Type:

Utility

Filling date:

4 Jan 2021

Issue date:

29 Apr 2021