NVIDIA Corporation
TEMPORAL INFORMATION PREDICTION IN AUTONOMOUS MACHINE APPLICATIONS

Last updated:

Abstract:

In various examples, a sequential deep neural network (DNN) may be trained using ground truth data generated by correlating (e.g., by cross-sensor fusion) sensor data with image data representative of a sequences of images. In deployment, the sequential DNN may leverage the sensor correlation to compute various predictions using image data alone. The predictions may include velocities, in world space, of objects in fields of view of an ego-vehicle, current and future locations of the objects in image space, and/or a time-to-collision (TTC) between the objects and the ego-vehicle. These predictions may be used as part of a perception system for understanding and reacting to a current physical environment of the ego-vehicle.

Status:
Application
Type:

Utility

Filling date:

17 Jul 2019

Issue date:

17 Sep 2020