NVIDIA Corporation
STYLE-BASED ARCHITECTURE FOR GENERATIVE NEURAL NETWORKS

Last updated:

Abstract:

A style-based generative network architecture enables scale-specific control of synthesized output data, such as images. During training, the style-based generative neural network (generator neural network) includes a mapping network and a synthesis network. During prediction, the mapping network may be omitted, replicated, or evaluated several times. The synthesis network may be used to generate highly varied, high-quality output data with a wide variety of attributes. For example, when used to generate images of people's faces, the attributes that may vary are age, ethnicity, camera viewpoint, pose, face shape, eyeglasses, colors (eyes, hair, etc.), hair style, lighting, background, etc. Depending on the task, generated output data may include images, audio, video, three-dimensional (3D) objects, text, etc.

Status:
Application
Type:

Utility

Filling date:

21 May 2019

Issue date:

14 May 2020