NVIDIA Corporation
VIDEO PREDICTION USING SPATIALLY DISPLACED CONVOLUTION

Last updated:

Abstract:

A neural network architecture is disclosed for performing video frame prediction using a sequence of video frames and corresponding pairwise optical flows. The neural network processes the sequence of video frames and optical flows utilizing three-dimensional convolution operations, where time (or multiple video frames in the sequence of video frames) provides the third dimension in addition to the two-dimensional pixel space of the video frames. The neural network generates a set of parameters used to predict a next video frame in the sequence of video frames by sampling a previous video frame utilizing spatially-displaced convolution operations. In one embodiment, the set of parameters includes a displacement vector and at least one convolution kernel per pixel. Generating a pixel value in the next video frame includes applying the convolution kernel to a corresponding patch of pixels in the previous video frame based on the displacement vector.

Status:
Application
Type:

Utility

Filling date:

21 Mar 2019

Issue date:

26 Sep 2019