NVIDIA Corporation
TRAINING NEURAL NETWORKS WITH LIMITED DATA USING INVERTIBLE AUGMENTATION OPERATORS
Last updated:
Abstract:
Embodiments of the present disclosure relate to a technique for training neural networks, such as a generative adversarial neural network (GAN), using a limited amount of data. Training GANs using too little example data typically leads to discriminator overfitting, causing training to diverge and produce poor results. An adaptive discriminator augmentation mechanism is used that significantly stabilizes training with limited data providing the ability to train high-quality GANs. An augmentation operator is applied to the distribution of inputs to a discriminator used to train a generator, representing a transformation that is invertible to ensure there is no leakage of the augmentations into the images generated by the generator. Reducing the amount of training data that is needed to achieve convergence has the potential to considerably help many applications and may the increase use of generative models in fields such as medicine.
Utility
24 Mar 2021
9 Dec 2021