NVIDIA Corporation
LEARNING ROBOTIC TASKS USING ONE OR MORE NEURAL NETWORKS

Last updated:

Abstract:

Various embodiments enable a robot, or other autonomous or semi-autonomous device or system, to receive data involving the performance of a task in the physical world. The data can be provided as input to a perception network to infer a set of percepts about the task, which can correspond to relationships between objects observed during the performance. The percepts can be provided as input to a plan generation network, which can infer a set of actions as part of a plan. Each action can correspond to one of the observed relationships. The plan can be reviewed and any corrections made, either manually or through another demonstration of the task. Once the plan is verified as correct, the plan (and any related data) can be provided as input to an execution network that can infer instructions to cause the robot, and/or another robot, to perform the task.

Status:
Application
Type:

Utility

Filling date:

26 Aug 2021

Issue date:

16 Dec 2021