NVIDIA Corporation
IDENTIFYING IMAGE SEGMENTATION QUALITY USING NEURAL NETWORKS

Last updated:

Abstract:

Comparison logic compares boundaries of features of or more images based, at least in part, on identifying boundaries and indication logic coupled to the comparison logic to indicate whether the boundaries differ by at least a first threshold. The boundaries might comprise a first label mask representing boundaries of objects in an image that are boundaries in a segmentation determined from a segmentation process and a second label mask from a shape evaluation process applied to the first label mask. The indication logic might be configured to compare the first label mask and the second label mask to determine a quality of the segmentation. A neural network might perform the segmentation. Shape evaluation using the first label mask as an input and the second label mask as an output might be performed by a variational autoencoder. A graphical processing unit (GPU) might be used for the segmentation and/or the autoencoder.

Status:
Application
Type:

Utility

Filling date:

21 Oct 2021

Issue date:

10 Feb 2022