NVIDIA Corporation
MACHINE LEARNING BASED GENERATION OF SYNTHETIC CROWD RESPONSES

Last updated:

Abstract:

Systems and methods for generating real-time synthetic crowd responses for events, to augment the experience of event participants, remote viewers, and the like. Various sensors monitor the event in question, and various event properties are derived from their output using an event state model. These event properties, along with various event parameters such as score, time remaining, etc., are then input to a machine learning model that determines a real-time synthetic audience reaction tailored to the immediate state of the event. Reaction parameters are used to generate a corresponding crowd or audience audio signal, which may be broadcast to event participants, viewers, spectators, or anyone who may be interested. This instantaneous, realistic crowd reaction more closely simulates the experience of events with full on-site audiences, enhancing the viewing experience of both event participants and those watching.

Status:
Application
Type:

Utility

Filling date:

5 Feb 2021

Issue date:

11 Aug 2022