Oracle Corporation
Data-parallel parameter estimation of the Latent Dirichlet allocation model by greedy Gibbs sampling
Last updated:
Abstract:
A novel data-parallel algorithm is presented for topic modeling on a highly-parallel hardware architectures. The algorithm is a Markov-Chain Monte Carlo algorithm used to estimate the parameters of the LDA topic model. This algorithm is based on a highly parallel partially-collapsed Gibbs sampler, but replaces a stochastic step that draws from a distribution with an optimization step that computes the mean of the distribution directly and deterministically. This algorithm is correct, it is statistically performant, and it is faster than state-of-the art algorithms because it can exploit the massive amounts of parallelism by processing the algorithm on a highly-parallel architecture, such as a GPU. Furthermore, the partially-collapsed Gibbs sampler converges about as fast as the collapsed Gibbs sampler and identifies solutions that are as good, or even better, as the collapsed Gibbs sampler.
Utility
16 Jan 2015
8 Dec 2020