Oracle Corporation
TECHNIQUES FOR THE SAFE SERIALIZATION OF THE PREDICTION PIPELINE

Last updated:

Abstract:

The present disclosure relates to systems and methods for a machine-learning platform for the safe serialization of a machine-learning application. Individual library components (e.g., a pipeline, a microservice routine, a software module, and an infrastructure model) can be encrypted using one or more keys. The keys can be stored in a location different from the storage location of the machine-learning application. Prior to incorporation of the library component into a machine-learning model, one or more keys can be retrieved from the remote storage location to authenticate that the one or more encrypted library components are authentic. The process can reject any of the one or more component, when the encrypted library component fails authentication. If a component is rejected, the system can roll back to a previous, authenticated version of the library component. The authenticated library components can be compiled into machine-learning software.

Status:
Application
Type:

Utility

Filling date:

12 Sep 2020

Issue date:

18 Mar 2021