Oracle Corporation
TECHNIQUES FOR OUT-OF-DOMAIN (OOD) DETECTION
Last updated:
Abstract:
The present disclosure relates to techniques for identifying out-of-domain utterances. One particular technique includes receiving an utterance and a target domain of a chatbot, generating a sentence embedding for the utterance, obtaining an embedding representation for each cluster of in-domain utterances associated with the target domain, predicting, using a metric learning model, a first probability that the utterance belongs to the target domain based on a similarity or difference between the sentence embedding and each embedding representation for each cluster, predicting, using an outlier detection model, a second probability that the utterance belongs to the target domain based on a determined distance or density deviation between the sentence embedding and embedding representations for neighboring clusters, evaluating the first probability and the second probability to determine a final probability, and classifying the utterance as in-domain or out-of-domain for the chatbot based on the final probability.
Utility
30 Mar 2021
30 Sep 2021