Oracle Corporation
System and method for partitioning models in a database

Last updated:

Abstract:

Systems, methods, and other embodiments are disclosed for partitioning models in a database. In one embodiment, a set of training data is parsed into multiple data partitions based on partition keys, where the data partitions are identified by the partition keys and are used for training data mining models. The multiple data partitions are analyzed to generate partition metrics data. Algorithm data, identifying at least one algorithm for processing the multiple data partitions, and resources data, identifying available modeling resources for processing the multiple data partitions, are read. The partition metrics data, the algorithm data, and the resources data are processed to generate an organization data structure. The organization data structure is configured to control distribution and processing of the multiple data partitions across the available modeling resources to generate a composite model object that includes a separately trained data mining model for each partition of the multiple partitions.

Status:
Grant
Type:

Utility

Filling date:

2 Aug 2016

Issue date:

16 Nov 2021