Oracle Corporation
ANOMALY DETECTION ON SEQUENTIAL LOG DATA USING A RESIDUAL NEURAL NETWORK
Last updated:
Abstract:
A multilayer perceptron herein contains an already-trained combined sequence of residual blocks that contains a semantic sequence of residual blocks and a contextual sequence of residual blocks. The semantic sequence of residual blocks contains a semantic sequence of layers of an autoencoder. The contextual sequence of residual blocks contains a contextual sequence of layers of a recurrent neural network. Each residual block of the combined sequence of residual blocks is used based on a respective survival probability. By the autoencoder and based on the using each residual block of the semantic sequence, a previous entry of a log is semantically encoded. By the recurrent neural network and based on the using each residual block of the contextual sequence, a next entry of the log is predicted. In an embodiment during training, survival probabilities are hyperparameters that are learned and used to probabilistically skip residual blocks such that the multilayer perceptron has stochastic depth.
Utility
7 Oct 2020
7 Apr 2022