Oracle Corporation
METHOD AND SYSTEM FOR OVER-PREDICTION IN NEURAL NETWORKS

Last updated:

Abstract:

Disclosed herein are techniques for addressing an overconfidence problem associated with machine learning models in chatbot systems. For each layer of a plurality of layers of a machine learning model, a distribution of confidence scores is generated for a plurality of predictions with respect to an input utterance. A prediction is determined for each layer of the machine learning model based on the distribution of confidence scores generated for the layer. Based on the predictions, an overall prediction of the machine learning model is determined. A subset of the plurality of layers are iteratively processed to identify a layer whose assigned prediction satisfies a criterion. A confidence score associated with the assigned prediction of the layer of the machine learning model is assigned as an overall confidence score to be associated with the overall prediction of the machine learning model.

Status:
Application
Type:

Utility

Filling date:

16 Nov 2021

Issue date:

2 Jun 2022