Proofpoint, Inc.
Neural network host platform for detecting anomalies in cybersecurity modules
Last updated:
Abstract:
Aspects of the disclosure relate to anomaly detection in cybersecurity training modules. A computing platform may receive information defining a training module. The computing platform may capture a plurality of screenshots corresponding to different permutations of the training module. The computing platform may input, into an auto-encoder, the plurality of screenshots corresponding to the different permutations of the training module, wherein inputting the plurality of screenshots corresponding to the different permutations of the training module causes the auto-encoder to output a reconstruction error value. The computing platform may execute an outlier detection algorithm on the reconstruction error value, which may cause the computing platform to identify an outlier permutation of the training module. The computing platform may generate a user interface comprising information identifying the outlier permutation of the training module. The computing platform may send the user interface to at least one user device.
Utility
30 Sep 2020
14 Jun 2022