Pinterest, Inc.
Recommending content to subscribers

Last updated:

Abstract:

Systems and methods for recommending content to an online service subscriber are presented. For each subscriber, content items that were the subject of the subscriber's prior interactions are projected, via associated embedding vectors, into a content item embedding space. The content items, via their projections into the content item embedding space, are clustered to form a plurality of interest clusters for the subscriber. A representative embedding vector is determined for each interest cluster, and a plurality of these embedding vectors are stored as the representative embedding vectors for the subscriber. The online service, in response to a request for recommended content for a subscriber, selects a first representative embedding vector associated with the subscriber and identifies a new content item from a corpus of content items according to a similarity measure between the first representative embedding vector and an embedding vector associated with the new content item.

Status:
Grant
Type:

Utility

Filling date:

23 Jun 2020

Issue date:

9 Aug 2022