POSCO Holdings Inc.
Stainless steel for polymer fuel cell separator and method for preparing same

Last updated:

Abstract:

There are provided a ferrite stainless steel for a polymer fuel cell separator having excellent corrosion resistance and interfacial contact resistance under an operating environment of a polymer fuel cell, and a preparation method of the stainless steel. A stainless steel includes C: 0.02 wt % or less, N: 0.02 wt % or less, Si: 0.4 wt % or less, Mn: 0.2 wt % or less, P: 0.04 wt % or less, S: 0.02 wt % or less, Cr: 25.0 to 32.0 wt %, Cu: 0 to 2.0 wt %, Ni: 0.8 wt % or less, Ti: 0.5 wt % or less, Nb: 0.5 wt % or less, waste Fe and inevitably contained elements. A preparation method of the stainless steel having a second passive film formed on a surface thereof includes forming a first passive film on the surface of the stainless steel by bright-annealing or annealing-pickling the stainless steel; removing the first passive film by pickling the stainless steel in a 10 to 20 wt % sulfuric acid solution at a temperature of 50 to 75.degree. C. for a predetermined time; water-washing the stainless steel; and forming the second passive film by performing a passivation treatment on the stainless steel in the mixture of a 10 to 20 wt % nitric acid and a 1 to 10 wt % fluorine acid at a temperature of 40 to 60.degree. C. for the predetermined time. Accordingly, it is possible to prepare a stainless steel having reduced elution resistance and excellent corrosion resistance and to produce a stainless steel for a polymer fuel cell separator, which has low interfacial contact resistance and excellent long-term performance even under a fuel cell operating condition of 60 to 150.degree. C. and various surface roughness conditions.

Status:
Grant
Type:

Utility

Filling date:

8 Feb 2016

Issue date:

29 Jun 2021