Royal Bank of Canada
SYSTEM AND METHOD FOR MACHINE LEARNING ARCHITECTURE WITH VARIATIONAL HYPER-RNN

Last updated:

Abstract:

A variational hyper recurrent neural network (VHRNN) can be trained by, for each step in sequential training data: determining a prior probability distribution for a latent variable from a prior network of the VHRNN using an initial hidden state; determining a hidden state from a recurrent neural network (RNN) of the VHRNN using an observation state, the latent variable and the initial hidden state; determining an approximate posterior probability distribution for the latent variable from an encoder network of the VHRNN using the observation state and the initial hidden state; determining a generating probability distribution for the observation state from a decoder network of the VHRNN using the latent variable and the initial hidden state; and maximizing a variational lower bound of a marginal log-likelihood of the training data. The trained VHRNN can be used to generate sequential data.

Status:
Application
Type:

Utility

Filling date:

22 May 2020

Issue date:

26 Nov 2020