Royal Bank of Canada
SYSTEMS AND METHODS FOR QUANTITATIVE ORDER ROUTING

Last updated:

Abstract:

A smart order router for quantitative trading and order routing and corresponding methods and computer readable media are described. The smart order router includes a machine learning prediction engine configured to, responsive to a control signal received from an upstream trading engine including at least a maximum quantity value and an urgency metric, process input data sets through one or more predictive models to generate the one or more potential combinations of child orders and their associated fill probability metrics, toxicity metrics, and expected gain (loss) metrics and an order placement optimization engine configured to receive the one or more potential combinations of child orders and their associated fill probability metrics, toxicity metrics, and expected gain (loss) metrics and to identify an optimum combination of child orders that maximize an objective function.

Status:
Application
Type:

Utility

Filling date:

24 May 2019

Issue date:

28 Nov 2019