SAP SE
Machine learning anomaly detection

Last updated:

Abstract:

The disclosure generally describes methods, software, and systems, including a method for machine learning anomaly detection for a set of assets. Assets are analyzed using anomaly-detection analysis and a set of anomaly-detection rules. Each asset is associated with correlated records comprising characteristics of the particular asset and characteristic of non-asset-specific signals. Each anomaly-detection rule is associated with conditions determined to be indicative of a potential anomaly. At least a subset of the assets are provided for presentation in a user interface. Each asset is identified as being in a potential anomalous or non-anomalous state based on the anomaly-detection analysis. Input is received from a user identifying at least one asset as anomalous as a non-anomalous asset. Based on the received input, at least one anomaly-detection rule is modified that was applied to identify the asset as anomalous. The modified rule is stored for future analyses.

Status:
Grant
Type:

Utility

Filling date:

8 Jun 2017

Issue date:

15 Feb 2022