Silicon Laboratories Inc.
End Node Spectrogram Compression For Machine Learning Speech Recognition

Last updated:

Abstract:

A system and method of recording and transmitting compressed audio signals over a network is disclosed. The end node device first converts the audio signal to a spectrogram, which is commonly used by machine learning algorithms to perform speech recognition. The end node device then compresses the spectrogram prior to transmission. In certain embodiments, the compression is performed using Discrete Cosine Transforms (DCT). Furthermore, in some embodiments, the DCT is performed on the difference between two columns of the spectrogram. Further, in some embodiments, a function that replaces values below a predetermined threshold with zeroes in the Encoded Spectrogram is utilized. These functions may be performed in hardware or software.

Status:
Application
Type:

Utility

Filling date:

11 Jun 2020

Issue date:

16 Dec 2021