Synopsys, Inc.
Predicting no-defect-found physical failure analysis results using Bayesian inference and generalized linear models
Last updated:
Abstract:
A Physical Fault Analysis (PFA) outcome prediction tool utilizes previously-generated evaluation data and associated PFA outcome data to generate a Bayesian Generalized Linear Model (BGLM), and then utilizes the BGLM to generate a PFA outcome prediction for newly-submitted evaluation data that operably characterizes measured operating characteristics of an IC chip that is being developed. The BGLM generation methodology by utilizing a Generalized Linear Model (GLM) in a Bayesian framework to form a hierarchical model representing the evaluation data and associated PFA outcome data as a linear combination. The PFA outcome prediction includes a credible interval of a posterior distribution that effectively represents a cross-sectional portion of the BGLM corresponding to the newly-submitted evaluation data. The previously-generated evaluation data and associated PFA outcome data are stored in a training data library, which is updated to include newly-submitted evaluation data and associated PFA outcome after each PFA is performed.
Utility
29 Apr 2019
8 Sep 2020