Synaptics Incorporated
Binary and multi-class classification systems and methods using connectionist temporal classification

Last updated:

Abstract:

A classification training system for binary and multi-class classification comprises a neural network operable to perform classification of input data, a training dataset including pre-segmented, labeled training samples, and a classification training module operable to train the neural network using the training dataset. The classification training module includes a forward pass processing module, and a backward pass processing module. The backward pass processing module is operable to determine whether a current frame is in a region of target (ROT), determine ROT information such as beginning and length of the ROT and update weights and biases using a cross-entropy cost function and connectionist temporal classification cost function. The backward pass module further computes a soft target value using ROT information and computes a signal output error using the soft target value and network output value.

Status:
Grant
Type:

Utility

Filling date:

12 Feb 2018

Issue date:

1 Sep 2020