Uber Technologies, Inc.
Intelligent regularization of neural network architectures
Last updated:
Abstract:
A trained computer model includes a direct network and an indirect network. The indirect network generates expected weights or an expected weight distribution for the nodes and layers of the direct network. These expected characteristics may be used to regularize training of the direct network weights and encourage the direct network weights towards those expected, or predicted by the indirect network. Alternatively, the expected weight distribution may be used to probabilistically predict the output of the direct network according to the likelihood of different weights or weight sets provided by the expected weight distribution. The output may be generated by sampling weight sets from the distribution and evaluating the sampled weight sets.
Utility
20 Oct 2017
2 Nov 2021