Uber Technologies, Inc.
Systems and Methods for Mitigating Vehicle Pose Error Across an Aggregated Feature Map
Last updated:
Abstract:
Systems and methods for improved vehicle-to-vehicle communications are provided. A system can obtain sensor data depicting its surrounding environment and input the sensor data (or processed sensor data) to a machine-learned model to perceive its surrounding environment based on its location within the environment. The machine-learned model can generate an intermediate environmental representation that encodes features within the surrounding environment. The system can receive a number of different intermediate environmental representations and corresponding locations from various other systems, aggregate the representations based on the corresponding locations, and perceive its surrounding environment based on the aggregated representations. The system can determine relative poses between the each of the systems and an absolute pose for each system based on the representations. Each representation can be aggregated based on the relative or absolute poses of each system and weighted according to an estimated accuracy of the location corresponding to the representation.
Utility
15 Jan 2021
3 Feb 2022