Uber Technologies, Inc.
Generation of trip estimates using real-time data and historical data

Last updated:

Abstract:

A system uses machine models to estimate trip durations or distance. The system trains a historical model to estimate trip duration using characteristics of past trips. The system trains a real-time model to estimate trip duration using characteristics of recently completed trips. The historical and real-time models may use different time windows of training data to predict estimates, and may be trained to predict an adjustment to an initial trip estimate. A selector model is trained to predict whether the historical model, the real-time model, or a combination of the historical and real-time models will more accurately estimate a trip duration, given features associated with a trip duration request, and the system accordingly uses the models to estimate a trip duration. In some embodiments, the real-time model and the selector may be trained using batch machine learning techniques which allow the models to incorporate new trip data as trips complete.

Status:
Grant
Type:

Utility

Filling date:

22 Aug 2018

Issue date:

2 Jun 2020