Visa Inc.
Transition Regularized Matrix Factorization For Sequential Recommendation

Last updated:

Abstract:

Apparatuses, methods, and systems are provided for making sequential recommendations using transition regularized non-negative matrix factorization. A non-application specific collaborative filtering based personalized recommender system can recommend a next logical item from a series of related items to a user. The recommender system can recommend a next desirable or series of next desirable new items to the user based on the historical sequence of all user-item preferences and a user's most recent interaction with an item. An asymmetric item-to-item transition matrix can capture aggregate sequential user-item interactions to design a loss function for matrix factorization that incorporates the transition information during decomposition into low-rank factor matrices.

Status:
Application
Type:

Utility

Filling date:

28 Jan 2022

Issue date:

19 May 2022