VMware, Inc.
Simulator-training for automated reinforcement-learning-based application-managers

Last updated:

Abstract:

The current document is directed to methods and systems for simulation-based training of automated reinforcement-learning-based application managers. Simulators are generated from data collected from controlled computing environments controlled and may employ any of a variety of different machine-learning models to learn state-transition and reward models. The current disclosed methods and systems provide facilities for visualizing aspects of the models learned by a simulator and for initializing simulator models using domain information. In addition, the currently disclosed simulators employ weighted differences computed from simulator-generated and training-data state transitions for feedback to the machine-learning models to address various biases and deficiencies of commonly employed difference metrics in the context of training automated reinforcement-learning-based application managers.

Status:
Grant
Type:

Utility

Filling date:

22 Jul 2019

Issue date:

1 Feb 2022