Walmart Inc.
System and method for personalized item recommendations through large-scale deep-embedding architecture
Last updated:
Abstract:
A method including receiving a basket including basket items selected by a user from an item catalog. The method also can include grouping the basket items of the basket into categories based on a respective item category of each of the basket items. The method additionally can include randomly sampling a respective anchor item from each of the categories. The method further can include generating a respective list of complementary items for the respective anchor item for the each of the categories based on a respective score for each of the complementary items generated using two sets of trained item embeddings for items in the item catalog and using trained user embeddings for the user. The two sets of trained item embeddings and the trained user embeddings can be trained using a triple embeddings model with triplets. The triplets each can include a respective first user of users, a respective first item from the item catalog, and a respective second item from the item catalog, in which the respective first user selected the respective first item and the respective second item in a respective same basket. The method additionally can include building a list of personalized recommended items for the user based on the respective lists of the complementary items for the categories. The method further can include sending instructions to display, to the user on a user interface of a user device, at least a portion of the list of personalized recommended items. Other embodiments are disclosed.
Utility
30 Jan 2020
29 Mar 2022