Apple Inc.
MACHINE LEARNING METHOD AND SYSTEM FOR SUPPRESSING DISPLAY INDUCED NOISE IN TOUCH SENSORS USING INFORMATION FROM DISPLAY CIRCUITRY
Last updated:
Abstract:
In some examples, touch data can include noise. The noise can be generated by a component of an electronic device that includes a touch screen. For example, one or more signals transmitted to the display circuitry of an electronic device can become capacitively coupled to the touch circuitry of the device and cause noise in the touch data. Machine learning techniques, such as gated recurrent units and/or convolutional neural networks can estimate and reduce or remove noise from touch data when provided data or information about the displayed image as input. In some examples, the algorithm includes one or more of a gated recurrent unit stage and a convolutional neural network stage. In some examples, a gated recurrent unit stage and a convolutional neural network stage can be arranged in series, such as by providing the output of the gated recurrent unit as input to the convolutional neural network.
Utility
15 Dec 2020
20 Jan 2022