Apple Inc.
Deep learning driven multi-channel filtering for speech enhancement

Last updated:

Abstract:

A number of features are extracted from a current frame of a multi-channel speech pickup and from side information that is a linear echo estimate, a diffuse signal component, or a noise estimate of the multi-channel speech pickup. A DNN-based speech presence probability is produced for the current frame, where the SPP value is produced in response to the extracted features being input to the DNN. The DNN-based SPP value is applied to configure a multi-channel filter whose input is the multi-channel speech pickup and whose output is a single audio signal. In one aspect, the system is designed to run online, at low enough latency for real time applications such voice trigger detection. Other aspects are also described and claimed.

Status:
Grant
Type:

Utility

Filling date:

4 Dec 2017

Issue date:

28 Jan 2020