Microsoft Corporation
SYSTEM AND METHOD FOR IMPROVING MACHINE LEARNING MODELS BY DETECTING AND REMOVING INACCURATE TRAINING DATA

Last updated:

Abstract:

Methods, systems and computer program products are described to improve machine learning (ML) model-based classification of data items by identifying and removing inaccurate training data. Inaccurate training samples may be identified, for example, based on excessive variance in vector space between a training sample and a mean of category training samples, and based on a variance between an assigned category and a predicted category for a training sample. Suspect or erroneous samples may be selectively removed based on, for example, vector space variance and/or prediction confidence level. As a result, ML model accuracy may be improved by training on a more accurate revised training set. ML model accuracy may (e.g., also) be improved, for example, by identifying and removing suspect categories with excessive (e.g., weighted) vector space variance. Suspect categories may be retained or revised. Users may (e.g., also) specify a prediction confidence level and/or coverage (e.g., to control accuracy).

Status:
Application
Type:

Utility

Filling date:

19 Feb 2020

Issue date:

19 Aug 2021