Microsoft Corporation
ITERATIVE VECTORING FOR CONSTRUCTING DATA DRIVEN MACHINE LEARNING MODELS
Last updated:
Abstract:
Embodiments described herein are directed to generating a machine learning (ML) model. A plurality of vectors are accessed, each vector of the plurality of vectors including a first set of features associated with a corresponding data item. A second set of features is identified by expanding the first set of features. A ML model is trained using vectors including the expanded set of features, and it is determined that an accuracy of the ML model trained using the vectors increased. A third set of features is identified by determining a measure of importance for different subsets of features in the second set and replacing subsets having a low measure of importance with new features. A ML model is trained using vectors that include the third set, and it is determined that an accuracy of the model increased due to the replacing.
Utility
19 Feb 2020
19 Aug 2021