Microsoft Corporation
USING A RECURSIVE REINFORCEMENT MODEL TO DETERMINE AN AGENT ACTION

Last updated:

Abstract:

According to examples, an apparatus may include a processor and a memory on which is stored machine readable instructions that may cause the processor to access data about an environment of an agent, identify an actor in the environment, and access candidate models, in which each of the candidate models may predict a certain action of the identified actor. The instructions may also cause the processor to apply a selected candidate model of the accessed candidate models on the accessed data to determine a predicted action of the identified actor and may implement a recursive reinforcement learning model using the predicted action of the identified actor to determine an action that the agent is to perform. The instructions may further cause the processor to cause the agent to perform the determined action.

Status:
Application
Type:

Utility

Filling date:

6 Dec 2019

Issue date:

10 Jun 2021