Microsoft Corporation
MACHINE-LEARNED DEPTH DEALIASING

Last updated:

Abstract:

Techniques for de-aliasing depth ambiguities included within infrared phase depth images are described herein. An illuminator emits reference light towards a target object. Some of this light is reflected back and detected. A phase image is generated based on phase differences between the reference light and the reflected light. The phase differences represent changes in depth within overlapping sinusoidal periods of the reference and reflected light. The phase image also includes ambiguities because multiple different depths within the phase image share the same phase difference value, even though these depths actually correspond to different real-world depths. The phase image is fed as input to a machine learning ("ML") component, which is configured to de-alias the ambiguities by determining, for each pixel in the phase image, a corresponding de-aliasing interval. A depth map is generated based on the phase image and any de-aliasing intervals generated by the ML component.

Status:
Application
Type:

Utility

Filling date:

5 Feb 2021

Issue date:

10 Jun 2021