Microsoft Corporation
Learning optimizer for shared cloud

Last updated:

Abstract:

Described herein is a system and method for training cardinality models in which workload data is analyzed to extract and compute features of subgraphs of queries. Using a machine learning algorithm, the cardinality models are trained based on the features and actual runtime statistics included in the workload data. The trained cardinality models are stored. Further described herein is a system and method of predicting cardinality of subgraphs of a query. Features for the subgraphs of the query are extracted and computed. Cardinality models are retrieved based on the features of the subgraphs of the query. Cardinalities of the subgraphs of the query are predicted using the retrieved cardinality models. One of the subgraphs of the query is selected to be utilized for execution of the query based on the predicted cardinalities.

Status:
Grant
Type:

Utility

Filling date:

8 Jun 2018

Issue date:

27 Jul 2021