Microsoft Corporation
Tomography and generative data modeling via quantum boltzmann training
Last updated:
Abstract:
Quantum neural nets, which utilize quantum effects to model complex data sets, represent a major focus of quantum machine learning and quantum computing in general. In this application, example methods of training a quantum Boltzmann machine are described. Also, examples for using quantum Boltzmann machines to enable a form of quantum state tomography that provides both a description and a generative model for the input quantum state are described. Classical Boltzmann machines are incapable of this. Finally, small non-stoquastic quantum Boltzmann machines are compared to traditional Boltzmann machines for generative tasks, and evidence presented that quantum models outperform their classical counterparts for classical data sets.
Utility
16 Jun 2017
26 Oct 2021