Microsoft Corporation
Neural Network Categorization Accuracy With Categorical Graph Neural Networks

Last updated:

Abstract:

Neural network-based categorization can be improved by incorporating graph neural networks that operate on a graph representing the taxonomy of the categories into which a given input is to be categorized by the neural network based-categorization. The output of a graph neural network, operating on a graph representing the taxonomy of categories, can be combined with the output of a neural network operating upon the input to be categorized, such as through an interaction of multidimensional output data, such as a dot product of output vectors. In such a manner, information conveying the explicit relationships between categories, as defined by the taxonomy, can be incorporated into the categorization. To recapture information, incorporate new information, or reemphasize information a second neural network can also operate upon the input to be categorized, with the output of such a second neural network being merged with the output of the interaction.

Status:
Application
Type:

Utility

Filling date:

28 Apr 2020

Issue date:

28 Oct 2021