Microsoft Corporation
Power-efficient deep neural network module configured for parallel kernel and parallel input processing

Last updated:

Abstract:

A deep neural network (DNN) module utilizes parallel kernel and parallel input processing to decrease bandwidth utilization, reduce power consumption, improve neuron multiplier stability, and provide other technical benefits. Parallel kernel processing enables the DNN module to load input data only once for processing by multiple kernels. Parallel input processing enables the DNN module to load kernel data only once for processing with multiple input data. The DNN module can implement other power-saving techniques like clock-gating (i.e. removing the clock from) and power-gating (i.e. removing the power from) banks of accumulators based upon usage of the accumulators. For example, individual banks of accumulators can be power-gated when all accumulators in a bank are not in use, and do not store data for a future calculation. Banks of accumulators can also be clock-gated when all accumulators in a bank are not in use, but store data for a future calculation.

Status:
Grant
Type:

Utility

Filling date:

12 Apr 2018

Issue date:

21 Dec 2021