Microsoft Corporation
PARTIALLY-OBSERVED SEQUENTIAL VARIATIONAL AUTO ENCODER

Last updated:

Abstract:

A computer-implemented method of training a model comprising a sequence of stages, each stage in the sequence comprises: a VAE comprising a respective first encoder arranged to encode a respective subset of the real-world features into a respective latent space representation, and a respective first decoder arranged to decode from the respective latent space representation to a respective decoded version of the respective set of real-world features; at least each but the last stage in the sequence comprises: a respective second decoder arranged to decode from the respective latent space representation to predict one or more respective actions; and each successive stage in the sequence following the first stage, each succeeding a respective preceding stage in the sequence, further comprises: a sequential network arranged to transform from the latent representation from the preceding stage to the latent space representation of the successive stage.

Status:
Application
Type:

Utility

Filling date:

25 Aug 2020

Issue date:

30 Dec 2021